

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
DESIGN

SYSTEM
AND ANALYSIS OF AN
FOR A MULTI- BACKEND

ACCESS CONTROL
DATABASE SYSTEM

by

Ali Ekici

June 1984

Thesis Advisor: David K. Hsiao

Approved for public release; distribution unlimited

T217398

SECURITY CLASSIFICATION OF THIS PAGE (TTh^n Dmtm Enlmrmd)

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUaTn FS-
MONTEREY, CALIFORNIA

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

* TITLE (and Subtitle)

Design and Analysis of an Access Control
System for a Mult i-backend Database
System

5. TYPE OF REPORT & PERIOD COVERED
Master ' s Thes is
June 1984

6. PERFORMING ORG. REPORT NUMBER

7. AuThORCj;

Ali Ekici
8. CONTRACT OR GRANT NUMBERCij

9. PERFORMING ORGANIZATION N AM E AND ADDRESS
Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT PROJECT, TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93943

12. REPORT DATE

June 1984
13. NUMBER OF PAGES

113
14. MONITORING AGENCY NAME i ADDRESSC/' ditlertnt Irom Controlling Oftlct) 15. SECURITY CLASS, (ol ihla report)

UNCLASSIFIED

15«, DECLASSIFICATION' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fol thia Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the abttract entered In Block 30, II dlllerenl from Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse elde II neceeaary and Identlly by block number)

Access control, database, attribute, backend

20 ABSTRACT (Continue on reverse aide II neceeeary and Identlly by block number)

This thesis describes the design and analysis of an access con-

trol mechanism for a mult i-backend database system (MDBS). MDBS
utilizes a minicomputer as the controller and a number of mini-
computers and their disk systems as the backends. The database
is distributed over the dedicated disk systems of the backends.
The operations on the database are performed by the backends in

parallel. Thus, the performance gain of the system is dependent

on the number of backends in the system. Each backend (Cont)

DD 1 JAN 73 1473 EDITION OF 1 NOV 85 IS OBSOLETE

S N 0102- LP- 014- 6601
1 SeCUHlTY CLASSIFICATION OF THIS PAGE (Whan Data Bntarad)

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dtm BntM4>

ABSTRACT fContinuedl

performs its own access control operations using duDlicatedaccess control information. ^ uupucated

5 N 0102- LF.014-660I

SECumrv classification of this PAOerirh,n Omlm Bnl,„d)

Approved for public release, distribution unlimited

Detail Design and Analysis of
an Access Control System

for a

Multi-backend Database System

by

Ali .Ekici
Ltjg, Turkish Navy

B.S., Turkish Naval Academy, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1984

ABSTRACT

This thesis describes the design and analysis of an

access control mechanism for a mul ti-backend database system

(MDBS). MDBS utilizes a minicomputer as the controller and

a number of minicomputers and their disk systems as the

backends. The database is distributed over the dedicated

disk systems of the backends. The operations on the database

are performed by the backends in parallel. Thus, the

performance gain of the system is dependent on the number of

backends in the system. Each backend performs its own

access control operations using duplicated access control

information. *
'

TABLE OF CONTENTS

I. INTRODUCTION 10

A. COMPUTER SECURITY 10

B. DATABASE SECURITY 12

C. ACCESS DECISION PROBLEMS OF DATABASE SECURITY 13

D. ACCESS CONTROL PRECISION 14

1. Compartmentalizat ion 15

2. Multilevel Security 15

E. ACCESS CONTROL SYSTEM DESIGN METHODOLOGY FOR

DATA-BASE SYSTEMS 15

II. AN OVERVIEW OF THE MULTI-BACKEND DATABASE SYSTEM

(MDBS) ' 17'

A. A TOP-LEVEL VIEW OF MDBS 17

B. A TOP-LEVEL VIEW OF THE MDBS DATA MODEL 18

1. Keyword Predicates 18

2. Three Types of Descriptors 20

3. The Relationship of Keywords and

Descriptors 21

U. The Cluster Formation 21

C. THE DATA MANIPULATION LANGUAGE 26

1. Retrieve Requests 26

2. Insert Requests 28

3. Delete Requests 28

4. Update Requests 28

D. THE MDBS HARDWARE AND SOFTWARE ORGANIZATION.. 29

1. Functions of the Controller 31

5

2. Functions of each Backend 32

a. The Directory Management Function ... 32

(1) The Descriptor Search 36

(2) Cluster Search 36

(3) The Address Generation 37

b. The Record Processing Function 37

(1) The Physical Data Operation 37

(2) The Aggregate Operation 39

III. ACCESS CONTROL MECHANISM OF MDBS UO

A. THE ACCESS CONTROL PRINCIPLES OF MDBS 40

1. Access Control System must Utilize the

Advantages of the MDBS Architecture 40

2. Access Control System should not Decrease

Efficiency 41

3. Access Control System should not Provide

only static security policiec for dynamic

databases 41

4. Access Control System should Provide Uni-

form Protection for Record Collections

of Same Characteristics 42

5. Access Control System should Provide Finer

Granularity 42

B. THE ACCESS CONTROL REQUIREMENTS OF MDBS 43

C. THE ACCESS CONTROL STEPS 44

1 . Pre-processing 45

2. Post-processing 45

6

D. THE PREPROCESSING ACCESS CONTROL INFORMATION

AS SPECIFIED BY THE DATABASE CREATOR 4?

1. Access Control Descriptors 48

2. The Descriptor-to-Security-Speci

f

ication

table (DSST) 50

3. The Secondary-Storage-Based DSST 52

4. The Cluster-level Access Control Informa-

tion 54

5. The Cluster-to-Cluster-Based-Security-

Specification Table (CSST) 59

6. The Secondary-Storage-Based CSST 60

IV. PREPROCESSING 63

A. PRE-PROCESSING FOR NON-INSERT REQUESTS 63

1

.

The Cluster Security Specification Search 64

2. The Cluster Authorization Decision 66

a. The Authorization for Retrieve Re-

quests 67

b. The Authorization for Delete Requests 70

c. The Authorization for Update Requests 72

B. PREPROCESSING FOR THE INSERT REQUESTS 73

1

.

Insert Requests for an Existing Cluster . 74

2. Insert Requests into the Empty Cluster .. 75

3. Insert Requests into a new Cluster 77

V. INSERT REQUESTS WITH THE NEW DESCRIPTORDS 79

A. THE REASON FOR THE NEW DESCRIPTOR 79

B. THE AUTHORIZATION REQUIREMENTS FOR A REQUEST

7

WITH A NEW DESCRIPTOR 80

C. THE NEW DESCRIPTOR CREATION AUTHORIZATION ... 82

1. The New-Descriptor-Authorization Table

(NDAT) 83

2, The Secondary Memory Based NDAT 83

D. NEW DESCRIPTOR CREATION TIME 86

1. Method-1 for new Descriptor Creation 88

2. Method-2 for new Descriptor Creation 88

3. Method-3 for new Descriptor Creation 89

4. The Sequence of an Insert Request with

the Superior Method . . , 89

E: the ACCESS CONTROL INFORMATION SPECIFICATION

FOR THE NEW DESCRIPTORS 92

1

.

Method 1 for the Access Control Specifi-

cation for a new Descriptor 92

2. Method 2 for the Access Control Specifi-

cation for a new Descriptor 93

3. A Comparison of the Methods 94

VI. THE POSTPROCESSING 98

A. ACCESS CONTROLS IN POSTPROCESSING 98

B. THE POSTPROCESSING PHASE 99

C. THE POSTPROCESSING ACCESS CONTROL INFORMATION

AS SPECIFIED BY THE DATABASE CREATOR 101

1. The Non-Directory-Attribute Table (NAT) . 104

2. The Attribute-Security-Specification Ta-

ble (ASST) 104

8

D. THE POSTPROCESSING OPERATION 104

E. THE POSTPROCESSING AUTHORIZATION PROCESS 108

VII. CONCLUSION 109

LIST OF REFERENCES 112

INITIAL DISTRIBUTION LIST 113

I . INTRODUCTION

The main contribution of this thesis is the design and

analysis of an access control mechanism for the Multi-

Backend Database System (MDBS). The design outlines of the

access control mechanism have been suggested in [Ref.2]. In

this thesis, the detailed design and analysis are given. To

this end, we first present the general concepts of computer

security. We then present the role of database security.

A. COMPUTER SECURITY .
• '•

"Computer security deals with the managerial procedures

and technological safeguards applied to computer hardware,

software, and data to assure against accidental or

deliberate unauthorized access to and dissemination of

computer system data" [Ref.1]. The importance of computer

security can best be appreciated if the computer is used to

store and process the information about military secrecy or

proprietary industrial items.

Computer security can be considered in four basic

layers: physical security, hardware security, software

security and database security. Physical security deals

with the protection of computer against physical accesses.

Physical access can be controlled with managerial,

identification and authentication procedures. Hardware,

10

software and database security are necessary only after

physical access to the computer is accomplished. Hardware

security deals with the protection of the user's data and

program from other users by way of hardware protection

mechanisms such as memory protection. Software security

deals with the protection of the user's data and program by

way of software protection mechanisms. The basic mechanisms

for software security are surveillance, threat monitoring

and access control. Surveillance is to keep track of the

user and the associated resources which are requested by the

user. Access control deals with the user access

authorization for resources during the program execution'.

These resources can be programs, files, etc. Logically , the

operating system handles the access control with an access

control matrix indexed by user-ids and resource-ids where

each entry of the matrix consists of authorizations for the

user to access the corresponding resource.

Database security is concerned with the protection of

databases stored in the computer. If data of a database

must be kept confidential, then the database must be

protected against unauthorized accesses. When a large

amount of confidential data must be processed and protected,

the issues of database security become very important.

Since our main subject is to provide an access control

mechanism for a database system, we will elaborate the

issues of database security in the following section. Other

1 1

security issues will not be the subject for discussion in

this thesis.

B. DATABASE SECURITY

The principal problem for database security can be

defined as determining who can access which data and what

are the operations allowed on the data. This may be thought

of as the same as the basic resource-access control problem

which has been presented above. In essence, the problem is

handled with the similar techniques, but, here, the argument

is the comprehension of the semantics of the data rather

than the basic resource-ids. For example, the basic question

for access control is to decide 'who' can perform 'what'

operations on 'which' data in the database. First two

questions can be argued for both the resource-access control

and the database access control, but to specify 'which'

portion of the the database is to be authorized for the

users may be more involved with the data model and semantics

of the data.

Database management systems treat data differently than

traditional data processing systems. Traditional data

processing systems store data as a collection of values but

database management systems store data as a collection of

attribute-value pairs and relationships among the pairs. The

attributes allow us to view the types or characteristics of

12

corresponding values. The relationships allow us to relate

one type of values to another type of values.

In the database system under discussion (MDBS), we will

consider database security for databases which are organized

as attribute-value pairs. This gives us uniform

representation of information and we can keep track of some

semantic relationships among data.

C. ACCESS DECISION PROBLEMS OF DATABASE SECURITY

Access decision may be based on the following factors.

Access decision on value - sensitive information depends on

the current value of data and the user's authorized value

limits. Access decision on state - sensitive information

depends on the dynamic state of the database management

system. For example, the user can open a file only if it is

not in an unlocked state. There is pattern - sensitive

information, such that, the user may be allowed to sort a

file but he may not be allowed to read the content of the

file. History - sensitive information must be protected

against a series of operations which may allow some

inferences about unauthorized information. For example, if

ranks and salaries of persons in the database are

coincident, then the user can read the rank of a person and

infer the salary. Event - sensitive information must be

protected from the user during the unauthorized period. For

13

example, tellers can only access the system during the

working hours.

The access control mechanism for a database management

system should protect all types of information presented

above. However, since protections of some of these types are

difficult to implement, most systems do not implement for

all the types.

D. ACCESS CONTROL PRECISION

After an access decision, the database management system

must perform physical access to the database in order to

fetch authorized and requested data. The database

management system should access only authorized and

requested data. This is necessary for performance and

security reasons. A system which fetches only authorized

and requested data is called a system with absolute

precision . Absolute precision must be the ultimate goal of

database management system designers.

Database management systems without absolute precision

cause the pass - through problem , since they fetch some

unnecessary data in order to access the authorized and

requested data. If the data which have been passed through

have more stringent security feature then there may be a

security breach. The system should have either absolute

precision or solve the bad aspect of the pass-through

problem.

14

In the next two subsections, some basic approaches for

the pass-through problem will be described. Detailed

information can be found in [Ref.1].

1 . Compartmentalization

The data with identical protection requirements are

grouped and stored together. These groups with uniform

security requirements are called security atoms . Security

atoms become the unit for access. If we do not need all

records in a security atom then we will have access

imprecision. However, we will not have the pass-through

problem, since none of the unnecessary records in the

security atom have the higher level protection requirements

than the authorized ones.

2 . Multilevel Security

It may be desirable to classify the data in the

database by hierarchical layers. The user may have access

authorization up to a certain security level. This notion

can be combined with the security atom concept. Each

security atom may belong to a classification level. So, the

combination of security atoms with the same security

classification can be used to create these layers.

E. ACCESS CONTROL SYSTEM DESIGN METHODOLOGY FOR DATABASE

SYSTEMS

We have seen that database security deals with the

semantics of data. Before designing the access control

15

system, the designer must study and analyze the system's

data model. Since, most of the time, the data abstractions

are very large and complex, this analysis must be very

orderly and in only necessary detail. The designer has to

look for a standpoint to start. It can be an uniform data

unit for security atom concept, etc.

There is only one interface between the user and the

database system, the request. The access control system must

recognize requests and it must have a mechanism to start the

access decision with information available in request.

In the next chapter, we will give an overview of MDBS in

terms of data abstraction, data manipulation language and

basic request execution process in order to understand the

system and utilize the system facilities in the access

control mechanism. In the third chapter, we will describe

the basic design issues of MDBS access control system and

the access control information requirements . In the following

chapters, we will elaborate the the basic steps of the

access control system.

16

II . kU OVERVIEW OF THE MULTI - BACKEND DATABASE SYSTEM (MDBS)

In this chapter, we will introduce the general structure

of the multi-backend database system (MDBS). MDBS has been

designed in [Ref.2] and [Ref.3], and the implementation of

the system has been presented in CRef.4], [Ref.5] and

[Ref.6]. The information in this chapter has been extracted

from [Ref.4] and [Ref.5].

A. A TOP-LEVEL VIEW OF MDBS

One minicomputer functions as the controller, with

multiple minicomputers and their disks configured in a

parallel manner to serve as backends [Ref.2, Ref.4]. The

database is distributed on secondary storage across all of

the backends. User access is accomplished through a host

computer communicating with the controller. The MDBS

structure can be classified as a centralized system,

although the hardware is distributed.

As shown in Figure 2.1, the controller and the backends

are connected by a broadcast bus. When a transaction is

received from the host computer, the controller broadcasts

the transaction to all the backends at the same time. Each

backend has a number of dedicated disk drives. Since the

data is distributed across the backends, a transaction can

be executed by all backends in parallel. Each backend

17

maintains a queue of transactions. When one transaction has

been executed, the backend can begin execution on another

transaction from its queue.

B. A TOP-LEVEL VIEW OF THE MDBS DATA MoDEL

The data model chosen for the system is the attribute-

based data model [Ref.2]. In MDBS the database consists of

files of records. Each record is a collection of keywords,

optionally followed by a record body. A keyword is made of

an attribute-value pair such as <SALARY , $ 1 2 ,000> where

$12,000 is the value of the attribute SALARY. A record body

is a string of characters not used by MDBS for search

purposes. An example of a record without a record body is

shown below.

(<FILE,Employee>, <EMPLOYEE_NAME ,Smith> , <CITY , Columbus>

,

<SALARY,$12,000>, <SERVICE,10>)

The first attribute-value pair in all records of a file

are the same. In particular, the attribute is FILE and the

value is the file name . For example, the above record is

from the Employee file.

1 . Keyword Predicates

A keyword predicate , or simply predicate , is of the

form (attribute, relational operator, value). A relational

operator can be one of the set { =, ! = , >, >= , <, =< }. A

keyword K is said to satisfy a predicate P if the attribute

13

one or r.ore

disk drives

cz:^.

one or rore
disk drives

Figu3pe 2.1 The MDBS Hardware Organization

19

of K is identical to the attribute in P and the relation

specified by the relational operator of P holds between the

value of K and the value in P. For example, the keyword

<SALARY, 15000> satisfies the predicate (SALARY > 10000).

2 . Three Types of Descriptors

A descriptor can be one of three types: Type-A,

Type-B and Type-C. A Type-A descriptor is a conjunction of

a less-than-or-equal-to predicate and a greater-than-or-

equal-to predicate, such that the same attribute appears in

both predicates. An example of a type-A descriptor is as

follows:

((SALARY >= 2,000) and (SALARY =< 10,000)).

More simply, this is written as (2,000 =< SALARY =< 10,000).

A Type-B descriptor is an equality predicate. An

example of a type-B descriptor would be (POSITION =

Manager)

.

A Type-C descriptor consists of only an attribute

name, known as the type -C attribute . Let us assume that

there are n different keywords K1, K2 , ..., Kn, in the

records of a database with a type-C attribute. Then, this

type-C descriptor is really equivalent to n type-B

descriptors B1 , B2 , ..., Bn , where Bi is the equality

predicate satisfied by Ki. In fact, this type-C descriptor

will cause n different type-B descriptors to be formed. From

now on, we shall refer to the type-B descriptors formed from

20

a type-C descriptor as type -C sub -descriptors . For

instance, consider that DEPT is specified as a type-C

attribute for a file of employee records. Furthermore, let

all employees in the file belong to either the Toy

department or the Sales department. Then, two type-C sub-

descriptors for DEPT will be formed as follows:

(DEPT = Toy) and (DEPT = Sales)

3

.

The Relationship of Keywords and Descriptors

A keyword is said to be derived or derivable from a

descriptor if one of the following holds:

(1) The attribute of the keyword is specified in a type-A

descriptor and the value is within the range of the

descriptor .

(2) The attribute and value of the keyword match those

specified in a type-B descriptor.

(3) The attribute of the keyword is specified in a type-C

descriptor .

4

.

The Cluster Formation

For performance reasons, records are logically

grouped into clusters based on the attribute values and

attribute value ranges in the records. As described above,

these values and value ranges are called descriptors . For

example, one cluster might contain records for those

21

employed in Columbus, making at least $20,001 but not more

than $25,000 and with at least 11 but not more than 15 years

of service. Thus records of this cluster are grouped by the

following three descriptors:

(CITY= Columbus) , ($20 ,001 =<SALARY=<$25 , 000

)

,(11=<SERVICE=<15)

These descriptors are said to define the cluster which

contains records of employees in Columbus making between

$21,000 and $22,000 per year and with 12 to 13 years

experience would require the retrieval of records in the

cluster just described. Other requests, such as to find

records of employees in Columbus making between $21,000 and

$28,000 and with 12 to 13 years experience, might require

additional retrieval of records from other clusters than the

one identified above.

In MDBS, processing is done a cluster at a time. In

order to allow efficient processing of requests, records in

a cluster are spread across all the backends. Thus each

backend needs to search only its portion of the cluster.

Given a user request, there must be a way, of course, first

to determine which clusters to search and then to determine

the location of records in a given cluster. To perform this

task, MDBS utilizes available descriptor information. For

example, given the previous request for finding employees

where

22

(CITY=Columbus)and($21 ,000=<SALARY=<$23,000)
and(12=<SERVICE=<13)

MDBS first determines that two clusters must be searched.

These are the clusters identified by the two sets of

descriptors :

{(CI TY= Columbus) , ($20 ,001 =<SALARY=<$25 ,000)

,

(11=<SERVICE=<15)}

{(CITY= Columbus) , ($25 ,00

1

=<SALARY=<$30 ,000) ,

•
•

' (n = <SERVICE = <15) }

After the clusters are identified, MDBS must then determine

the disk addresses of the clusters at each backend. Finally

MDBS will cause each backend to retrieve from its disks the

records so addressed.

Descriptor search determines the descriptors that

correspond to the request. In our example, there are four

descriptors corresponding to the request; namely,

(CITY= Columbus) , ($20 ,001 =<SALARY=<$25 , 000)

,

($25,001=<SALARY=<$30,000) , (1 1 =<SERVICE=<1 5)

.

23

In order to save space and to save processing time each

descriptor is identified by a descriptor id . For example,

1

1
Descriptor Descriptor Id

!(CITY = Columbus) D15

l($20,001 =< SALARY =< $25,000) D125

!($25,001 =< SALARY =< $30,000) D126

+-
1 1 =< SERVICE =< 15) D250

Thus the output of the descriptor search phase is the

Boolean expression of descriptor ids

D15 and (D125 or D126) and D250 (1)

corresponding to

($20,001=<SALARY=<$25K)
(CITY=Col) and or and (1

1

=<SERVICE=< 1 5

)

($25,001=<SALARY=<$30K)

which identifies two clusters. The next phase, cluster

search must take the Boolean expression in (1) and actually

24

determine the corresponding clusters. As with descriptors,

clusters are also identified by ids, known as cluster ids
,

for example

Descriptor Ids I

! D15, D125, D250

Cluster Id

C17

D15, D126, D250 C22

The final two phases are address generation (to find

the disk addresses, e.g., A35U6 and A3547, corresponding to

each cluster id, e.g., C17) and record selection (to

retrieve the actual records so addressed).

Descriptor search, cluster search and address

generation together form the major portion of directory

management .

Because all directory management is based on the

concept of clusters, it is also logical to design an access

control capability based on clusters. Thus cluster search is

augmented by a cluster access control mechanism.

25

C. THE DATA MANIPULATION LANGUAGE

The data manipulation language for MDBS is a non-

procedural language which supports four different types of

requests - retrieve, insert, delete and update. The syntax

of these various requests and examples of them are presented

below.

1 . Retrieve Requests

A retrieve request

RETRIEVE Query Target-List [BY Attribute] [WITH Pointer]

consists of five parts. The first part is the type of the

request i.e. RETRIEVE. The second part is a query which

identifies the portion of the database to be retrieved. A

query is any arbitrary Boolean expression of predicates.

An example of a query is:

((DEPT=Toy)and(SALARY<10000)) or
((DEPT=Book) and (SALARY>50000)

)

The target - list is a list of elements. Each element is

either an attribute, e.g., SALARY, or an aggregate operator

to be performed on an attribute, e.g., AVG(SALARY). MDBS

supports five aggregate operators - AVG , SUM, COUNT, MAX,

MIN. The values of an attribute in the target-list are

retrieved from all records identified by the query. If no

aggregate operator is specified on the attribute in the

26

target-list, its values in all the records identified by the

query are returned directly to the user or user program. If

an aggregate operator is specified on the attribute in the

target-list, some computation is to be performed on all the

attribute values in the records identified by the query and

a single aggregate value is returned to the user or user

program. The fourth part of the request, referred to as the

BY - clause , is optional as designated by the square brackets

around it. The use of the By-clause is explained by means of

an example. Assume that employee records are to be divided

into groups on the basis of the departments for the purpose

of calculating the average salary for all the employees in a

department. This may be achieved by using a retrieve request

with the specific target-list, (AVG(SALARY)) , and the

specific BY-clause, BY DEPT. Finally, the fifth part of the

request, which is an optional WITH-clause, specifies whether

pointers to the retrieved records must be returned to the

user or user program for later use in an update request.

Some examples of retrieve requests are presented below.

Example-

1

Retrieve the names and salaries of all employees making

more than $1000/month.

RETRIEVE (FILE=Employee) and (SALARY>5000) (NAME , SALARY)

27

Example-2

List the average salary of all departments.

RETRIEVE (FILE=Employee) (AVG (SALARY)) BY DEPT

2 . Insert Requests

An insert request

INSERT Record

specifies a record to be inserted into the database. An

example of an insert request is:

INSERT (<F ILE, Employ ee>,< SALARY, 5000 >,<DEPT, Toy >)

3 . Delete Requests

A delete request is of the form:

DELETE Query

where the Query specifies the particular records to be

deleted from the database. An example of a DELETE request

is:

DELETE (NAME=Smith) or (SALARY>50000

)

4 . Update Requests

An update request is of the form:

UPDATE Query Modifier

where the Query specifies the particular records to be

28

updated from the database and the Modifier specifies the

kinds of modification that need to be done on records that

satisfy the query. In an update request, if a single

attribute value is to be changed, then the attribute is

termed the attribute being modified The modifier in an

update request specifies the new value to be taken by the

attribute being modified. The new value to be taken by the

attribute being modified is specified as a function f of the

old value of either the same attribute or some other

attribute (say, attribute-1) . More specifically, the

modifier may be one of the following five types:

Type-0 : <attr ibute=constant>

Type-I : <attribute= f(attribute) >

Type-II : <attribute=f(attribute- 1)

>

Type-Ill : <attribute=f(attribute- 1) of Query>

Type-IV : <attribute=f(attribute- 1) of Pointer>

D. THE MDBS HARDWARE AND SOFTWARE ORGANIZATION

MDBS is implemented in several permanent processes. The

process structure within the controller and each backend is

shown in Figure 2.2.

In the following two sections, we describe the functions

performed in the controller and the backends, respectively.

29

H

CONTROLLER

+ +

1 Post !

! Processing
I

+ +

I Request
I

I
Preparation

I

+ +

+ +

Insert Info
Generation

+

+

+ +

+ +

I
Concurrency

I

! Control !

+ +

+ +
1 Record

I

I Processing
!

+ +

i
Directory

I

I
Management I

+ +

A BACKEND

+ +

Figure 2.2 - The Process Structure in the Controller and

the Backends.

30

1 . Functions of the Controller

The MDBS controller consists of three categories of

functions: request preparation, insert information

generation and post processing. The request preparation

functions are those which must be performed before a request

or a transaction can be broadcasted to the backends. For

example, each request must be parsed and checked for syntax

errors before it can be broadcasted to the backends. The

insert information generation functions are those which must

be performed during the processing of an insert request to

furnish additional information required by the backends. For

example, a backend should be selected for storing the record

being inserted into the secondary storage of the backend.

The post processing functions are those which must be

performed after replies are returned from the backends, but

before the results of a request or a transaction are

forwarded to the host machine. For example, the results for

a request returned by each backend should be collected.

After receiving the results from each backend, the response

to the request can be sent to the host machine.

We note that there are no concurrency control

functions in the controller. Since user requests are

carried out by the backends, there is no need for

concurrency control in the controller. The controller must

only associate sequence numbers with the user requests.

31

2. Functions of each Backend

Each backend in MDBS consists of three categories of

functions: directory management, record processing and

concurrency control. The d irectory management function

performs descriptor search, cluster search, address

generation and directory table maintenance. The record

processing function performs record storage, record

retrieval, record selection and attribute value extraction

of the retrieved records. For example, these functions

store records into the secondary storage, retrieve records

from the secondary storage and select the records that

satisfy a query from a set of records. The concurrency

control function performs operations which ensure that the

concurrent and interleaved execution of user requests will

keep the database consistent. For example, these functions

schedule a user request for execution based on the set of

clusters needed by the request. Since, in this thesis, we

deal with database security, handled in the backends, we

will next describe the functions of the backends in more

detail .

a. The Directory Management Function

Directory management has four phases: Descriptor

Search, Cluster Search, Access Control and Address

Generation. The input to directory management is either the

record part of an insert request or the query part of a

32

retrieve, delete, or update request. The three non - insert

request types, namely, retrieve, delete and update, require

the same directory management processing. However, the

insert request type requires a different directory

management processing. Thus we will describe directory

management in terms of two categories: non-inserts and

inserts

.

Directory management has four directory tables:

The descriptor-to-descriptor-id table (DDIT), the attribute

table (AT), the cluster-definition table (CDT) and the

cluster-Id-to-next-backend table (CINBT) These tables are an

integrated part of the directory management. Logically,

they are defined as follows: All the descriptors defined by

the database creator are stored in the descriptor - to -

descriptor - id table (DDIT). There is a descriptor id

associated with each descriptor. There is an entry in the

attribute table (AT) for every directory attribute. A

pointer to the DDIT is stored with each directory attribute.

The pointer points to the first descriptor whose attribute

is identical to the corresponding directory attribute. A

sample AT and DDIT are depicted in Figure 2.3- By showing

these two tables together, we can easily depict the pointers

of AT. The cluster -definition table has an entry for every

cluster. Each entry consists of the cluster number, the set

of descriptor ids whose descriptors define the cluster, and

addresses of the records in the cluster (Figure 2.4). The

33

AT

000

Attribute Ptr

POPULATION

CITY

FILE

DDIT

Descriptor

<= POPULATION <= 50000

^j^ULATION' <= nOO

100001 <= POPULATION <= 250000
i
D13

250001 <= POPULATION <r 500000 1 D14

CITY = Cumberland

1 CITY = Columbus
»• — — _ — — __ — _ — _._ — __ — _ — .

^ILr^ - Emclove?

5 n s J :

Dij = Descriptor j for attribute i.

Figure 2.3 A Sample Attribute Table (AT) and

Descriptor-to-Descriptor-Id Table (DDIT)

34

I
Cluster ! Desc'-Id Set

I
Address (*)

!

+ + + +

I CI ! {D11 ,D21 ,031} ! A1,A2 !

+ + + ---+
1 C2 I {D14, 022,032} I A3 1

+ + + ^

(*) Secondary storage addresses for the records

in the cluster

Figure 2.4 A Sample Cluster-Oef init ion Table (CDT)

35

cluster - id - to - next - backend table (CINBT) is used as a basis

of record insertion to the backends. Let us look at the

four phases of the directory management.

(1) The Descriptor Search . In this phase,

directory management determines the descriptor ids of the

descriptors that satisfy the predicates (keywords) in a

query (record). Input to Descriptor Search comes from

Request Preparation in the controller. As described in

detail in [Ref.5], if there are N backends processing a

query (record) with X predicates (keywords), then each

backend performs. descriptor search on X/N predicates

(keywords) and broadcasts the descriptor ids to the other

backends

.

(2) The Cluster Search . In this phase,

directory management determines either the cluster id of the

cluster to which a record belongs (for an insert request) or

the cluster ids of the clusters whose records may satisfy a

query (for a non-insert request). Input to Cluster Search

are the descriptor ids found by Descriptor Search in all the

backends. For insert requests. Cluster Search passes the

cluster id, if any, to Insert Information Generation in the

controller. For non-insert requests, the cluster ids are

passed to Address Generation.

36

(3) The Address Generation . In this phase,

directory management determines either the secondary storage

address for storing a record when processing an insert

request or the addresses of all the records in a set of

clusters when processing a non-insert request. For insert

requests, Insert Information Generation in the controller

determines which backend is to insert the record. When a

backend is selected, Address Generation in that backend

determines the secondary storage address for record

insertion. That address and the formatted request are then

passed to Physical Data Operation.
* .

For non-insert requests, Cluster Search

passes the cluster ids to Address Generation. Address

Generation finds the addresses of the records in these

clusters and passes the addreses and the formatted request

to Physical Data Operation.

b. The Record Processing Function

This function perform operations such as record

selection and field extraction of the retrieved records.

The names of these operations are: Physical Data Operation

and Aggregate Operation.

(1) The Physical Data Operation . Input to this

operation comes from Address Generation. The input is a set

of secondary storage addresses and the request. Physical

Data Operation performs different actions depending on the

type of the request. For an insert request, Physical Data

37

Operation stores the record being inserted into the

secondary storage.

For a non-insert request, i.e., delete,

retrieve or update, Physical Data Operation fetches the

records from the secondary storage and selects the records

that satisfy the query in the request. It then performs the

intended operation on the basis of the type of the non-

insert request. For delete requests, Physical Data

Operation marks the selected records for deletion.

For retrieve requests, Physical Data

Operation extracts the values from the selected records. If

an aggregation is to be applied to the request, then

Physical data Operation passes the values to Aggregate

Operation phase of Record Processing.

For update requests, Physical Data

Operation updates the selected records and returns to the

secondary storage those updated records that have not

changed cluster. If one or more records change cluster.

Physical Data Operation marks the old records for deletion

and sends the records that have changed cluster to Request

Preparation in the controller. Request Preparation initiates

the actions required for the insertion of these records into

their new clusters.

38

(2) The Aggregate Operation . This operation

performs the partial aggregate operations in retrieve

requests. Input to Aggregate Operation comes from Physical

Data Operation in the form of a set of values and the

aggregate operators to be applied. Aggregate Operation

applies the aggregate operations on the set of values and

passes the results to Post Processing in the controller.

In chapter I, we introduced the access

control systems in general. In chapter II, we gave an

overview of the structure and the attribute-based data model

of MDBS. In the next chapter, we will describe the access

control mechanism of MDBS.

39

III. ACCESS CONTROL MECHANISM OF MDBS

We have seen that MDBS has four major phases for

directory management: descriptor search, cluster search,

access control and address generation. In descriptor search,

MDBS determines the descriptor-id groups which identify the

clusters requested by the user. In cluster search, MDBS

determines the cluster-ids corresponding to the descriptor-

id groups found at descriptor search. The access control

phase eliminates the unauthorized cluster-ids. Finally,

address generation determines secondary storage addresses

for the authorized clusters. In this chapter, we describe

the access control phase in more detail.

A. THE ACCESS CONTROL PRINCIPLES OF MDBS

The access control mechanism [Ref.2], has been designed

to utilize the parallel execution facilities of the

backends. Let us see the basic principles of MDBS's access

control mechanism.

1 . Access Control must Utilize the Advantages of the

MDBS Architecture

The basic idea of the MDBS architecture is to have a

multiple backend system which performance most of the

database management functions in the backends. Because of

this architectural principle, the access control mechanism

40

is added to the function of the backends. Thus, we must

store the security-related information in the backends. Each

backend only needs to store the subset of tables, which are

pertinent to data stored in that backend. As a result, if

the response time and the throughput of the backend system

will be improved by parallel backend processing, then the

access control function will also be improved accordingly.

2

.

Access Control System should not Decrease Efficiency

An access control mechanism amy bring additional

overhead to a system. It might be thought that additional

access control checks on the records would slow down the

request execution. However, We do' not agree with this

observation. If we have a mechanism to distinguish the

authorized records from the unauthorized ones before record

processing, then we need not fetch the unauthorized records.

Consequently, we do not require secondary storage accesses

for unnecessary, unauthorized records. In this way, we can

improve the efficiency of the system for some requests. In

addition, this mechanism provides absolute precision and

avoids the pass-through problem.

3

.

Access Control System should not Provide only Static

Security Policiec for Dynamic Databases

The database creator should have an ability to

specify the protection policy for each user at database

creation time. In addition, the database creator should also

have the ability to specify the protection policy for new

41

users. Since a database will not be static due to

insertion, deletion and update of records, we want to have

an access control mechanism to create new security

specifications which fit the database creator's security

policy.

U. Access Control should Provide Uniform Protection

for Record Collections of Same Characteristics

We want to protect records with the same

characteristics in the same way. Records with similar

access control requirements should be stored together and

isolated from other records with different access control

requirements. Recall that clusters are the collections of

records with uniform characteristics. We want to store

similar records together in a cluster. We can extend the

concept of clusters to handle security. If we have security

specifications on a cluster then we can protect all records

in this cluster in the same way. Such a grouping of records

has been called a security atom in chapter I. Utilization

of the security atom concept will solve the pass-through

problem also.

5. Access Control System should Provide Finer

Granularity

In request execution with access control, MDBS

should also be restrict an operation on particular records

in a cluster. For example, the access control system should

prevent the update operations, if a record in a cluster has

42

a salary which is greater or equal to $2000. This feature

brings access control to the field level (i.e., the level of

att ibute-value pairs) from the cluster or record level. With

the field level access control, the mechanism provides a

finer granularity of security.

In MDBS, values of an attribute may be divided into

different ranges. Each such attribute-range pair is called

a descriptor. If we use descriptors for security

specifications, then we can protect the domain of the

attribute values of the database. Since clusters are

defined by sets of mutually exclusive descriptors on each

attribute, we can also protect the clusters by employing

their defining descriptors. Descriptors are created at the

database creation time. Thus, the security specifications

can also be created at the database time. If we want to

have finer granularity on a particular attribute for access

control, we can create descriptors with smaller attribute-

value ranges.

B. THE ACCESS CONTROL REQUIREMENTS OF MDBS

MDBS should have an access control mechanism which

protects value-dependent and pattern-sensitive information.

History-sensitive and event-sensitive information is not

considered as subject of the MDBS access control system.

State-sensitive information is dealt with concurrency

control mechanism.

43

Value-dependent access control protects data on the

basis of the relationship of the attribute value of the data

and the user of the data. It is not enough to have

protection on the value of a descriptor as the finest

granularity of security. For example, the database creator

may want to allow managers to retrieve the salary of

employees in their respective departments. If we authorize

the managers to retrieve the salary of employees, then the

managers will have authorization to retrieve the salary of

all employees whether or not they are in the managers'

department. Thus, the access control must be dependent on

specific attribute value in order to provide value-dependent

security.

Another requirement for MDBS access control system is to

provide security for statistics of the database by

controlling the execution of requests which utilize the

aggregate functions such as average, maximum and minimum.

C. THE ACCESS CONTROL STEPS

The access control checks described above occur at two

disjoint times. The access control checks which are

performed before any record retrieval are considered as

pre - processing while those which are performed after the

record retrieval are considered as post - processing . As has

been stated in the second access control principle, pre-

processing is one of the goals of the access control system.

44

In the next section, we discuss pre- and post-processing in

more detail ,

1 . Pre - processing

Access control checks made prior to the retrieval of

records from the secondary storage prevent the access

control mechanism from having to deal with unauthorized

records. Thus, access control precision is increased. To

achieve this goal, we have to utilize information about the

records available in the directory management, namely, the

clusters information. Thus, we should perform some access

control checks before the record processing phase and even

before the address generation phase.

In the preprocessing, the access-control checks are

related to descriptors and clusters. We can utilize the

descriptor and cluster information to perform pre-processing

by having some security specifications specified by the

database creator on the descriptors.

2 . Post - processing

We recall that the records in a database consist of

attribute-value pairs. Some of these attributes are chosen

as directory attributes. Descriptors are then defined on

these attributes in order to build clusters. The other

attributes are non-directory attributes which are not used

for defining clusters. The database creator may also want to

specify some security specifications on these attributes.

In addition, an attribute may become more important because

45

of the dynamic nature of the database. The database creator

may want to specify some security specifications on this

attribute but may not want to redesign the database by

making the attribute into a directory attribute.

The non-directory attribute values of the records

are not reflected in their directories. Consequently, the

only way to determine them is to examine the attribute

values of every retrieved record. This process can be

performed after the record retrieval as a post-processing

operation.

Allowing security specifications on the non-

directory attributes degrades the precision of the access

control. If the database has no security specifications on

the non-directory attributes, then the access control system

can achieve absolute precision. Consequently, the database

creator must consider this situation. If certain attribute

values should be protected, then their attributes should be

defined as directory attributes. Nevertheless, we still want

to provide a mechanism for post-checking in order to give

flexibility to the database creator for later use of non-

directory attributes for access control of the database. The

MDBS post-processing mechanism would not affect absolute

precision severely, since there is no reason to use non-

directory attributes for security specifications at the

database creation time. It is built in for allowing

flexibility in use by the database creator.

46

D. THE PREPROCESSING ACCESS CONTROL INFORMATION AS

SPECIFIED BY THE DATABASE CREATOR

In this section, we describe the preprocessing access

control information which is specified by the database

cretor at the database creation time. We also describe how

this information is stored in MDBS.

In order to decide on the authorization for a request,

we need the information concerning who can perform what

operations on which data in the database. The database

creator can specify the first two types of information

easily. For example, for specifying 'who', the database

creator can utilize user-ids which can be provided by MDBS.

For specifying 'what', the database creator can select some

of the access operations from the MDBS data manipulation

language. Specifying 'which' portion of the database is a

more elaborate exercise requiring a more detailed knowledge

of the data model. In the rest of the section, we will show

to specify a 'portion' of the database in order to give some

access rights on it.

We know that a cluster is the basic unit of access in

MDBS. As was argued in [Ref.2], we also want to utilize the

cluster as the basic unit for access control. Thus, we

expect the database creator to make some security

specifications at the cluster level. However, the database

creator is not directly awared of the cluster formation.

The database creator only specifies directory attributes and

47

disjoint descriptors on these attributes. MDBS then forms

the clusters for the database creator. Consequently, we can

expect the database creator to specify the security

specifications in terms of descriptors.

We must find a way to transform the access control

descriptors (about the fields) to the authorized and

unauthorized cluster-level (about the records) This

transformation will be addressed again later in this

chapter. First we will discuss the specification and

storage of access control descriptors.

1 . Access Control Descriptors

The database creator specifies field-level access

controls on the descriptors for each user. A field - level

access control specification is a triple of the form:

(Aggregate operator, Attribute, Disallowed access operation)

The form of a field-level access control specification has

been slightly changed because of some implementation

purposes, but the basic semantics is the same as given in

[Ref .2].

The attribute in the field-level access control

specification may be a directory or a non-directory

attribute. The dissallowed access operation is one of the

set { No_Retrieve , No_Delete, No_Insert, No_update}. The

aggregate operator is one of the aggregate operators of the

MDBS data manipulation language (e.g.. Max, Avg, Sum etc.).

48

The aggregate operator may be omitted in the specification.

The attribute is not necessary for a field-level access

control when the disallowed access operation is No_Insert or

No_Delete, since we insert and delete the whole record not

only an attribute of the record.

A security specification (ss) for a descriptor may

be 'all' or 'null' or a collection of field-level access

control specifications. A ss of 'all' indicates that all

accesses are disallowed for the respective user. A ss of

'null' indicates that no accesses are disallowed for the

respective user. The ss on a descriptor D is the collection

of field-level access control specifications for the

descriptor D. It can be represented as follows:

(D) {<Aggr_op, Attr id, dissallowed access op>,< >

< >T

For example, we might have the following

descriptor-ss for the descriptor D : (9<Salary< 1 00) is

(D) { <— , Job ,No_Update> , <Avg

,

Salary , No_Retrieve>

,

<— , Name , No_Retrieve> , <— ,— ,No_Delete>

,

<— ,— ,No Insert> }

The meaning of this security specification is as

follows: if a record has a salary between zero and 100, then

the user can not update the job attribute of the record. Nor

49

can the user retrieve the average value of salaries and Name

of the employees of all the records whose salaries are in

the range of zero and 100. In addition, the deletion and

insertion of any record with salary between and 100 is not

authorized .

We store all the descriptor-based security

specifications for each user in a descriptor - to - security -

specification table (DSST). This table and its

implementation are discussed in the next two subsections

2. The Descriptor - to -Security - Specification Table

(DSST)

Logically, DSST can be incorporated into an

augmented DDIT by adding to DDIT one column per user. See

Figure 3.1 below. Instead, we would like to store the

descriptor-level access conrol information in a seperate

descriptor - to - security - specification table as shown in

Figure 3.2.

There are several reasons to have a seperate table.

First, the descriptor-based security specifications are

database-creator-specified access control information and

are used to create cluster-level access control information.

They are not used directly for request authorization. We

have decided that MDBS would use cluster-level access

control information for request authorization. Such

cluster-level access control information is created once, at

the database creation time. It is used whenever we need to

50

Descrl Descriptor I
SS 1 SS

id 1 1
for user-1

I for user-2

D1 1 0<Salary=<100 I
{<Avg, Salary ,No_Retrieve>} 1 none

D2 |0>Salary>100 !{< ,Name, No_update>} ! all

• ••1 1 ••••)•••

Figure 3 • 1 An augmented DDIT

Des-id SS for user 1 SS for user 2

D1

D2

{ <Avg jSalary ,No_retrieve>

}

{< ,Name, No update>}

none

all

Figure 3.2 A separate Descriptor-to-Secur ity-

Specif ication Table (DSST)

deal with that cluster. The descriptor-level access control

information is then no longer used directly.

The second reason for a seperate DSST is that these

security specifications are of variable length whereas the

DDIT entries are of fixed length. Consequently, it is more

appropriate to separate variable length entries from fixed

length length entries, if we do not use them at the same

time in an operation.

The third reason for a separate DSST is that each

user may have a distinct ss on a descriptor. All these

distinct security specifications must be stored. If the

database has a large number of users,' then the main function

of DDIT which is 'the mapping from descriptor to

descriptor-id' will be very inefficient.

3 . The Secondary - Storage - Based DSST

Each user in the database will have a column in DSST

as depicted in Figure 3.2. If the database has a large

number of users, then we may want to store the DSSTs in the

secondary storage. Except as discussed in Chapter V, we use

the DSST only at the database load time to create the

cluster-based security specifications. Thus, it will be

efficient to store the DSST in the backends' secondary

storage. We can just fetch the particular user's DSST or

part of the DSST when it is needed.

Figure 3-3 shows a sample of the secondary-storage

based DSST. Each database in MDBS will have a user - index

52

user index

user 1 PI
I

P2 user n PI P2

PI rPointer to DSST

/

/ descriptor-index

/ Descriptor Security Specification Set

D1

Status
Spec

Dk

V

Additional Specs
for
D1

Figure 3-3 The Secondary-Storage-Based DSST

table in the backends' main memory. The user-index will have

a pointer to the DSST entry for each user.

In the DSST, we deal with the descriptor-ids rather

than the descriptor boundary values. This gives us the

opportunity to use a simple layered indexing technique with

variable length security specification entries.

4 . The Cluster - level Access Control Information

After the database creator has defined the

descriptors and the descritor-level access control

information, then the database loading mechanism can create

the clusters and the cluster-level access control

information.

A cluster has been defined by a set of descriptors.

The cluster-based security specifications are the union of

the corresponding descriptor-based security specifications

in the cluster. Consequently, the descriptor-based security

specifications and the cluster-based security specifications

can be represented in the same way. If the cluster is

defined by only one descriptor, then the cluster-based

security specification and the descriptor-based security

specification will be the same. If the cluster is defined

by more than one descriptor, then the union of the

descriptor-based security specifications will be the

cluster-based security specification.

Let us illustrate how to obtain the cluster-level

access control information from a set of descriptor-based

54

security specifications. Consider the database with four

employee records depicted in Figure 3 • '^ • The database

creator first specifies some of the attributes as the

directory attributes and then specifies some descriptors on

the basis of these attributes. This information is stored in

the DDIT (Figure 3.5). In this example, the attributes,

Salary and Department, have been specified as the directory

attributes. The attribute of the descriptors D1 and D2 is

Salary and descriptors D3 and D4 is Department. In addition,

the database creator defines descriptor-level access control

information on each descriptor for every user in the

database. This information is stored in the DSST (Figure

3.6). Now, the database creator has provided necessary

information for the directory management and the access

control mechanism. Using the entries and the information in

the DDIT, MDBS can form clusters and this information is

stored in the CDT (Figure 3.7).

With the descriptors corresponding to a cluster (in

CDT) and the descriptor-based security specifications

corresponding to the descriptors (in DSST), we can determine

those security specifications corresponding to the cluster

and store them in the cluster-to-cluster-based-security-

specification table (CSST)(See Figure 3.8). For example in

Figure 3.8, the cluster-1 is defined by the descriptors D1

and D3. In Figure 3.6, the descriptor-based security

specifications on the descriptors D1 and D3 for the user-1

55

Record I Attributes
No !

I I I

I Employee
I
Department_no I Salary iManager

1 ! 12 !
1 ! 1000 I 12

2 1 13 !
1 I 1500 ! 12

3 !
14

1
2

I
1200 I

14

U I 15 ! 2 I 2000 i
1U

Figure 3.4 A Sample Database with four Employee Records

Descriptor id ! Descriptor

D1 ! 1500 <= Salary

D2 I
1500 < Salary < -

D3 I
Department_1

D4 1 Department_2

Figure 3.5 Descr iptor-to-Descriptor_Id Table

for the Database of Figure 3.4.

S6

1 —
1

Descr id
I

Descriptor-ss ! Descriptor-s
1 for user_1 ' for user_2

D1 ! NONE I NONE

D2 1 {<Avg,Sal ,No_Retrieve>}

1

{<Avg,Sal , No_Retrieve>

}

D3 1 NONE 1
{<— ,Name,No_Update>}

D4 1 {<— ,Name,No_Delete>} ! NONE

Figure 3.6 A Descriptor-to-Secur ity-Specif ication

Table (DSST) '
'

'

Cluster_id Set of descriptors
—— — — — — — ——— "-~~ — — — — — — — —

—

records in the cluster

1 { D1,D3 } R1 ,R2

2 { D1 ,D4 } R3

3 { D2,D3 }
—

4 { D2,D4 } R4

Figure 3.7 The Cluster Definition Table (CDT) for

the database of Figure 3.4.

57

Clusl Cluster-based Security
I Cluster-based Security

id [Specifications for user-1 [Specifications for user-2

1 (NONE [{<--,Name,No_Update>}

2 [
{<— ,Name,No_Delete>} 1 NONE

1 [{ <Avg ,
Salary , No_Retrieve>

,

3 I
{<Avg ,Salary ,No Retrieve>}[< , Name, No Update>}

1 {<Avg, Salary ,No_Retrieve> ,

[

4 1
<

—

,Name ,No_Delete>} [{ <Avg ,
Salary , No_Retrieve>

}

Figure 3.8 Cluster-to-Cluster-Secur ity-Specif ication

Table (CSST) for the databese of Figure 3.4.

58

are 'none'. Consequently, the cluster-based security

specification on the cluster-1 for user_1 will be 'none'.

User_2 has descriptor-based security specifications as

'none' for descriptor D1 and {<— , Name , No_Update> } for

descriptor D3. Consequently, the cluster-based security

specification on cluster-1 for user_2 will be {<

—

, Name , No_Update> } . By repeating this process, for every

cluster and every user in the database, the cluster-level

access control information can be determined.

5 . The Cluster - to - Cluster - Based - Security Specification

Table (CSST)

The cluster-level access control information is

stored in an augmented_CDT which is the CDT with an

additional column for user-cluster-based security

specifications. Each user has an augmented CDT. The

augmented CDT is used in the cluster search, access control

and address generation phases of directory management.

In the cluster search phase, the cluster-ids for

those clusters whose records may satisfy a request are

determined. In the access control phase, the cluster-ids

whose records are not authorized for the user are determined

and the unauthorized cluster-ids are eliminated. In the

address generation phase, the secondary storage addresses of

the authorized clusters are determined.

In [Ref.6], the access control information has not

been considered. The CDT, without access control

59

information, has been implemented as two secondary-storage-

based tables. The first table is the descr iptor - to -

descriptor - id - bit -map table (DCBMT). The second table is the

cluster - id - to - secondary - storage - address table (CSSAT).

DCBMT is used for the cluster search phase and CSSAT is

used for the address generation phase. We will store the

access control information of CDT in a third secondary-

storage-based table called the cluster - to - cluster - based -

security - specification table (CSST) .

6 . The Secondary - Storage - Based CSST

Since each user needs only one CSST, we will need to

store CSSTs in the secondary storage. We will store the

user-index in the main memory of the backends and we will

have one pointer for each user's CSST tableCFigure 3.9).

CSST utilizes the cluster-ids for indexing. The

user-CSST pointer leads to the cluster-index for that user.

The cluster-index cells have upper and lower cluster-id

value. We look for the cluster-index cells whose values

cover the cluster-id in consideration. Each cluster-index

has a pointer which leads us to the cluster-based-security-

specification set. The cluster-level access control

information is stored in the corresponding cluster-based-

security-specification set cells. Each entry in the set has

space for a certain number of field-level access controls.

If there are two many field-level access controls, then some

will be stored in an overflow block which can be found by

60

User index

user 1 PI P2 User n PI P2

/ Cluster-index

CI Cm
Ck Cn

V Cluster Security Specification Set

CI

Status
Spec '

s

Ck
Status
Spec '

s

V

Additional Spec's
for CI

Figure 3.9 The Secondary-Storage-Based CSST

61

following a pointer from the cluster-based-security-

specification set.

62

IV. PREPROCESSING

In this chapter, we will describe in more detail the

preprocessing of the requests utilizing the access control

information. As in the other phases of directory

management, the access control mechanism distinguishes

between insert requests and non-insert requests

(retrieve , update and delete). The difference between an

insert request and a non-insert request is that the insert

request deals with only one cluster at a time while the

non-insert request may deal with many clusters at the same

time. In the following two sections, we will, in turn,

describe the preprocessing for non-insert and insert

requests

.

A. PRE-PROCESSING FOR NON-INSERT REQUESTS

Directory management with access control has four

phases; descriptor search, cluster search, access control

and address generation. Directory management starts with

descriptor search which finds the descriptor-id groups for

the request. Then cluster search finds the cluster-ids for

the corresponding descriptor-id groups. When all cluster-ids

are obtained for the request, access control checks are made

in order to produce a list of authorized cluster-ids.

63

Since access control for the non-insert requests works

on clusters, we can utilize the cluster-level access control

information for the request authorization. The request

authorization is performed in two steps. The first step is

cluster security specification search and the second step is

cluster authorization decision . In the following two

subsections, we will elaborate these two request

authorization steps.

1 . Cluster Security Specification Search

Cluster security specification search for a non-

insert request begins with a list of cluster-ids for

clusters to be authorized. We will use the cluster-based

security specifications, stored in the CSST (Figure 3.9), as

the access control information. CSST has three layers of

indexing; user-index, cluster-index and cluster security

specification set (cs-set). The user-index may be stored in

the main memory, while the rest of the table is stored in

the secondary storage. An algorithm to search CSST is as

follows

.

After the cluster search phase, for the cluster-ids

found, the access control phase is started. First, the

access control mechanism refers to the backend's main memory

and finds the particular user-id in the user-index. The

user-index shows us whether the user can access the database

or not. If the user is not authorized to access the

database, then the request is rejected. If the user is

64

authorized to access the database, then a pointer to the

cluster-index is fetched from the user-index. Thus, the

first layer indexing (the user-index) allows us to check the

user-access rights to the database.

With the pointer found in the user-index, the first

block of the cluster-index is fetched from the secondary

storage. Each cluster-index block has cells which have one

upper and one lower bound cluster-id, and one pointer. If a

cluster-id is between the upper and lower bounds of a cell,

then we say that the cell covers this cluster-id. The

pointer in the cell leads us to the cs-set which has its

clusters covered by the corresponding cell. For example, in

Figure 3.9, the first cell of the cluster-index has lower

bound as CI and upper bound as Ck. Consequently, The

cluster-ids between CI and Ck are covered by this cell and

the pointer in this cell leads us to the corresponding cs-

set block for these clusters. The above procedure is

repeated for each cluster-id yielding a pointer to the cs-

set for each of the corresponding clusters.

It can be observed that the strategy to search CSST

is to search it one layer at a time. For each block fetched,

the corresponding operations are performed for all clusters.

This strategy prevents redundant accesses to the CSST

blocks

.

The next step is to search all the cs-sets. Recall

that each cs-set block stores the access control information

65

for a certain number of clusters. Each cluster in the cs-set

has spaces for a part of the security specification which is

a certain number of field-level access controls. If a

cluster has more field-level access controls, then they are

stored in an overflow block which can be reached with a

pointer .

The cs-set blocks are searched one at a time,

starting with the cs-set block for the cluster with the

smallest cluster-id. A cs-set block is searched for all

clusters we are dealing with. After the processing of the

cs-sets are completed for all clusters, additional field-

level access controls for clusters are fetched from overflow

blocks utilizing the pointer obtained in the cs-set.

2. The Cluster Authorization Decision

The cluster-based security specification for each

cluster to be authorized has been provided from CSST in the

cluster security specification search. Now, the access

control mechanism should utilize the user request and the

cluster-based security specifications in order to decide

about the cluster authorization for the request.

In [Ref.3], the relationships among the disallowed

access operations in order to prevent compromising the

access control mechanism are described. These

relationships, called the access control implications , are

as follows:

66

No_Retrieve > No_Update

No_Retrieve > No_Delete

No_Update > No_Delete

No_Delete > No_Update

The determination of the security specification for

each cluster to be authorized is the same for all types of

non-insert requests. However, the processing of this

information for each type of request is, of course,

different. This processing will be described in the next

three subsections.

a. The Authorization for Retrieve Requests

The syntax of a retrieve request is:

RETRIEVE Query Target-List [BY Attribute]

Where the query is any arbitrary Boolean expression of

predicates which identifies the portion of the database to

be retrieved. The target - list is a list of elements. Each

element is either an attribute, e.g., SALARY, or an

aggregate operator to be performed on an attribute, e.g.,

AVG(SALARY). We support five aggregate operators - AVG , SUM,

COUNT, MAX, MIN - in MDBS. Let us have an example using the

database in Figure 3.^. The retrieve request could be as

follows

.

RETRIEVE (FilezEmployee) and (Department=2) (Avg

(

Salary)

)

67

The meaning of the above request is to retrieve

the average salary of the employees who are in department 2.

Let us assume that directory management has performed

descriptor search and cluster search. Determining that

clusters C2 and C4 may contain records satisfying the

request. The access control mechanism performs the cluster

security specification search for user-1 as described in the

previous section and finds the security specifications from

the CSST (see Figure 3.8) as follows:

(C2) {< ,-— ,No_Delete>}

(C4) {<Avg, Salary, No_Retrieve> ,< , ,No_Delete>}

The request calls for retrieving the salaries of

the records in cluster C2 and cluster C4. User-1 does not

have any contradictory security specification for retrieval

of cluster C2, since cluster C2 has a security specification

which only restricts the deletion of records. This check

operation is performed as follows. The access control

mechanism compares the attribute in the security

specification, which is null, and the attribute in the

target-list part of the request (i.e. salary). Since they do

not match, it authorizes the cluster. In the case of cluster

C4, the security specification has two field-level access

controls. Let us consider the first field-level access

control. The aggregate operator of both the field-level

access control and the request match (i.e. average). In

68

addition, the attribute of both the field-level access

control and the request match. Now, the access control

mechanism checks the disallowed access operation. Since it

is No_Retrieve, the request is not authorized to retrieve

the records of cluster C4 . As a result only the cluster C2

is authorized for this request and the user is warned as

only authorized records have been retrieved.

Let us now consider a slightly different request

as follows:

RETRIEVE (File=Employee) and (Department=2) (Salary)

The query in the request is the same as in the previous

example. However, the target-list calls for retrieving the

salaries of particular employees instead of the average

salary. Since the query is the same as in the previous

example, clusters C2 and C4 will again be the satisfying

clusters. In the first field-level access control for

cluster C4 , we see that the retrieval of the average salary

is not authorized. But here we want to retrieve only the

individual salaries. Now, we will have an access control

implication: if a request with an aggregate operator is not

authorized, then the same request without aggregate operator

will also not be authorized. Thus, for example, if the

retrieval of the average salary is not authorized, then the

retrieval of the individual salaries is also not authorized.

The inverse of this implication is not true. That is, even

69

if we have restriction the retrieval of salaries, retrieval

of the average salary can be authorized. We can state this

as follows.

<Avg
,
Salary , No_Retrieve> > <

,
Salary , No_Retrieve>

< jSalary , No_Retrieve> -/-> <Avg
,
Salary , No_Retrieve>

We can add this rule to the access control implications as

the fifth access control implication. We should recall that

the aggregate operations are used only in retrieve requests.

The fifth access control implication can be stated more

formally as follows. .

' '

<Agg-op , Attr-A , access op-3> > <Agg-op

,

Attr-A , access op-B>

b. The Authorization for Delete Requests

The syntax of a delete request is:

DELETE Query

where the query specifies the particular records which will

be deleted from the database. Let us consider an example for

a delete request from user-1.

DELETE (Fi le= Employee) and (Salary= 1000)

User-I wants to delete those employee records

which have salary as $1000. The query has only one predicate

which is covered by the descriptor D1 (see Figure 3.5).

70

Consequently, cluster CI (defined by descriptor D1 and D3)

and cluster C2 (defined by descriptor D1 and D4) contain

records which may satisfy the request since they have

records with salary less than or equal to $1500.

The cluster security specification search of the

CSST shown in Figure 3.8 finds the security specifications

of clusters CI and C2 for user-1 are as follows:

(CD NONE

(C2) {< , , No_Delete>}

Cluster CI does not have any security related restriction.

Consequently, we can reach the records R1 and R2 (See CDT in

Figure 3.7). We should recall that cluster CI contains those

records which have salary less than or equal to $1500; but,

the request needs only those records with salary equal to

$1000, in this case record R1.

According to the security specification for

cluster C2, the user is not authorized to delete a record in

cluster C2. Consequently, the delete request for cluster C2

is rejected. In addition, according to the access control

implications, even if the dissallowed access operation were

No_Retrieve or No_Update, then cluster Z2 would be

unauthorized. As a result, only the record R1 in cluster CI

will be deleted.

71

c. The Authorization for Update Requests

The syntax of an update request is:

UPDATE Query Modifier

where the query specifies the records to be updated and the

modifier specifies the update operation. Five basic modifier

types have been specified in [ref.4] and briefly described

in chapter 2. Each of the modifier types try to alter the

value of one attribute. Since the security specifications

specify the disallowed access operation for the attributes,

we can have an authorization decision immediately after we

find out the attribute to be modified.

Let us consider an example of an update by

user-2

.

UPDATE (File=Employee) and (Dept=2) and (Sal ary> 1500)

<Salary=Salary+50>

User-2, with this request, wants to increase by

$50 the salary of those employees who are in Department 2

and have salary greater or equal to $1500. Cluster search

determines the satisfying cluster as only cluster C2, which

is defined by descriptors D2 and D4. Cluster C2 has the

security specification with only one field-level access

control for user-2 as:

72

{<—

,

salary, No_Update>}

The access control mechanism compares the attribute in the

each field-level access control of the security

specification (here Salary) and the attribute in the

modifier (here again Salary). If they did not match, then

the cluster would be authorized. Since they match, the

access control mechanism looks at the dissallowed access

operation. Since the dissallowed access operation is

No_Update, the cluster is not authorized. Here, we have only

one satisfying cluster for the query and this cluster is

unauthorized. Thus, the request will be rejected. If the

dissallowed access operation were No_Retrieve or No_Delete,

then the request would also be rejected because of the

access control implication rules.

In the previous sections, we have described the

preprocessing for non-insert requests. In the following

section, we will describe the preprocessing for insert

requests

.

B. PREPROCESSING FOR THE INSERT REQUESTS

The MDBS data manipulation language specifies the insert

request as follows:

INSERT <Request>

where the Request is of the form {< Attribute ,Value> , <-->,

..., <— >}. As stated previously an insert request differs

73

from non-insert requests because it refers to a single

unique cluster. The actual processing of an insert request

depends on whether or not this cluster already exists. In

the following subsections, we will describe the

preprocessing of an insert request in detail using the

following example:

INSERT { <F i 1 e, Employ ee>,< Salary, 1 250>

,

<Dept , TOY>

}

1 . Insert Requests for an Existing Cluster

In the case of an insert request, descriptor search

may be performed by more than one backend, but the actual

insertion will be done by only one backend. If the cluster

already exists, i.e., already contains other records, then

the backend will also have the cluster-level access control

information in its CSST. The access control process for the

insert request with an existing cluster is performed only by

the one backend which is to perform the actual insertion

operation. The access control mechanism in this backend

handles this kind of insert request the same as a non-insert

request with one cluster.

At the end of the descriptor search, the satisfying

descriptor-id group is determined. The cluster-id search

will determine the unique cluster-id from CDT for the

descriptor-id group. The backend, chosen for the insertion,

will perform the cluster security specification search on

this cluster-id. This search is the same as the cluster

74

security specification search described for a non-insert

request. Having been provided the security specification for

the cluster and the user-id, the access control mechanism

will check the authorization on the request. If the security

specification does not have any disallowed access operation

as No_Insert, then the request will be authorized.

Let us now consider the example insert request for

the database in Figure 3.^. The user wants to insert an

employee record for an employee, who will have salary of

$1250 and who will be in department 1. In descriptor

search, the satisfying descriptor on attribute Salary is

found as descriptor D1 , since descriptor D1 covers all of

the salaries which are less than or equal to $1500 (see

Figure 3.5). The descriptor for the attribute department is

found as descriptor D3. Thus, the descriptor-id group for

this request is descriptors D1 and D3. In the cluster-id

search, directory management searches the CDT (see Figure

3.7) for the descriptor-id group and the cluster is found to

be cluster CI. After this point, processing is the same as

the access control phase of non-insert requests. The

security specification for cluster-1 will be searched from

the CSST and the security specification will be examined for

authorization of the request.

2. Insert Requests into the Empty Cluster

A second case occurs if all of the descriptors for

the insert are already defined, but this insert is the first

75

one for the cluster defined by this descriptor-id group. In

this case, no information about the cluster can be found in

the directory. Consequently, we can not find any cluster-

based security specifications for this cluster. However,

since all of the descriptors are the existing descriptors,

we can find the descriptor-level access control information

in DSST. Thus, we can derive the cluster-level access

control information from the descriptor-level access control

information as described in the algorithm in section III-D-

4.

The descriptor-based security specifications for

each descriptor are fetched from DSST. The union of the

descriptor-based security specifications is stored in CSST

as the cluster-based security specification for this

cluster. After this point, the authorization step for the

request is performed as before. Thus, for example, if one of

the disallowed access operations in the cluster-based

security specification is No_Insert, then the request is

rejected .

The method described above has an efficiency

problem. We derive the cluster-based security

specification, store it in CSST and then perform the

authorization decision. If the insertion is authorized,

then the record is inserted. If it is not authorized, then

the insertion is rejected. In this case, the effort to

update the CSST has been performed even though no insert

76

actually occurs. We should find a better solution to

overcome this inefficiency.

We reject an insert request if the dissallowed

access operation in a descriptor-based security

specification is No_Insert. During the DSST search, we can

check the dissallowed access operation for each descriptor.

If we find a dissallowed access operation of No_Insert in a

descriptor-based security specification, then the request

can be rejected immediately. In this case no update to the

CSST will be performed. If none of the descriptor-based

security specifications has the disallowed access operation

of No_Insert, then the request is authorized and the CSST

can be updated accordingly,

3. Insert Requests into a new Cluster

A third case arises if the request needs to create a

new descriptor. In this case not only will the cluster not

exist, but there will be no descriptor-level access control

information for this new descriptor. Thus, of course, we

can not derive the cluster-level access control information

as was described in the last section.

Insert requests with a new descriptor introduce two

new problems. The first is 'Who can create a new

descriptor?' The second is 'How can the descriptor-based

security specification for the new descriptor be

specified?'. The first question must be answered prior to

the actual request authorization. Consequently, the access

77

control process for the insert request with a new descriptor

can be divided into three phases; the new descriptor

creation authorization, the access control information

specification for the new descriptor and the total request

authorization .

In the initial access control design in [Ref.3], the

problem created by a new descriptor has not been addressed.

We will analyze this problem further in the following

chapter

.

78

V. INSERT REQUESTS WITH THE NEW DESCRIPTORDS

In chapter U, we described the preprocessing for insert

and non-insert requests utilizing the cluster-level and the

descriptor-level access control information developed in

chapter 3. At the end of chapter 4, we described an insert

request with a new descriptor and observed that there was no

access control information at the cluster-level or the

descriptor-level for this kind of request. In this chapter,

we will describe the access control information and the

access control methods for insert requests with a new

descriptor. Let us look first at what the reason is to have

a new descriptor.

A. THE REASON FOR THE NEW DESCRIPTOR

The database creator specifies the descriptors for Type

A and Type B attributes as an upper limit and a lower limit

on the attribute value. Thus, we never need to create a Type

A or Type B descriptor, since the value of the predicate

attribute will fall within the boundaries of the

descriptors. However, if the attribute is of Type C, then

each value ot the Type C attribute will result in a distinct

descriptor. For example, if attribute Department is of Type

C, then Department TOY and Department SALES are the distinct

descriptors. Since each value of the Type C attribute

79

results in a Type C descriptor, there may be some values

which are not defined as descriptors by the database

creator. For example, if Department ADVERTISING has not

been defined earlier but we want to create a new department

as ADVERTISING then we create a new Type C descriptor on the

Type C attribute department. We may even need to create more

than one Type C descriptor for an insert request.

B. THE AUTHORIZATION REQUIREMENTS FOR A REQUEST WITH A NEW

DESCRIPTOR

In the directory management processing without access

control, the new descriptors are created and broadcasted by

the controller. This process is done as follows. In the

descriptor search phase, if the backend can not find the

descriptor for a predicate, then it looks at the type of the

predicate attribute. If the attribute is of Type C and the

request is an insert request, then it sends a message to the

controller to create a new Type C descriptor. The controller

creates a new descriptor and broadcasts it to the all

backends. The backends receive the new descriptor and store

it into the proper tables.

Directory management with access control requires us to

add two more steps to the process described above. The first

step is 'the authorization step for the new descriptor' and

the second is 'the descriptor-level access control

specification for the new descriptor'. What will be the

80

order for these steps? New descriptor creation is a costly

process in terms of the number of messages among the

backends and the controller. Thus, we will try to to avoid

the unnecessary creation of a descriptor. Obviously, the

new descriptor authorization checks will be performed before

the new descriptor creation. Total request authorization

also depends on the other descriptors' security

specifications as well, we should refer to DSST to check the

security specifications for all of the descriptors in the

cluster .

Another necessary operation is to specify some

descriptor-based security specifications for the new

descriptor. The new descriptor's security specification is

specified and stored in DSST, and the cluster-based security

specification is derived from all of the descriptors'

security specifications.

Now, we know what we should do for the insert request

with a new descriptor. The order of the operations and the

methods for the operations must still be determined. In the

following sections, we will elaborate the steps of the

process in order to see and assess the various choices.

These steps are the new descriptor-creation authorization,

the new descriptor creation operation, the descriptor-level

access control specification for the new descriptor, the

authorization decision for the old descriptors and the

81

cluster-level access control information derivation for the

new cluster.

C. THE MEW DESCRIPTOR CREATION AUTHORIZATION

We know that each value of a Type C attribute is

considered for a distinct Type C sub-descriptor. If

department and job are specified as Type C attributes, then

each values of one of these attributes is also the value of

a distinct Type C sub-descriptor. The creation of a new

department defines a new descriptor. Another example can be

to add a new job to the system. The access control question

for this kind of operation can be stated more formally as

'who is the person allowed to create a new descriptor on

this attribute?'. This question can be answered by the

database creator at the database creation time, since it

depends on the basic organizational schema.

In MDBS, deletion and creation of an attribute is not

allowed after the database is first created. Since the

attributes are permanent, we can give some security

specifications on the attribute-level for the future

descriptor-creation authorizations. These security

specifications will be on Type C attributes for each user in

the database. We store the user - descriptor - creation

authorizations in a New-Descriptor - Authorization Table

(NDAT)

.

82

1

.

The New- Descriptor - Authorization Table (NDAT)

We store the descriptor-creation authorizations for

each user on the Type C attributes in this table (Figure

5.1). The descriptor-creation authorization on each Type C

attribute for user i is a boolean expression. In Figure

5.1, we can see that creation of a new department is

authorized for user 2 but not for user 1.

2. The Secondary Memory Based NDAT

We may want to store NDAT in the secondary storage,

since the dimension of NDAT depends on the number of the

users in the database which may be large. Figure 5.2 shows a

NDAT with secondary-based implementation.

The entries of NDAT are the user-ids. Only the

authorized Type C attributes for the new descriptors are

listed in NDAT. Thus, each user will have a variable length

entry with the attribute-ids in it. We may not want to use

well-structured indexed or B-Tree constructions for this

table, since the number of the Type C attributes in the

database is not large. In addition, most of the users will

have creation authorization only for a subset of these

attributes. In Figure 5.2, we can see that user 1 can

create some new descriptors on the attributes which are

listed. However user n is not authorized to create any

descriptors

.

83

User 1 PI ?2 P3
I

User n

/

! User_1
I User_2 ! I

User_n
Attr! Creation

I
Creation 1

1 Creation
ID I

Authorization
I Authorization! I Authorization

Dept! NO ! YES
I I

Job ! YES ! NO ! I

• •I •••••• I •••• I ••••••I

Figure 5.1 New Descriptor Authorization Table (NDAT)

84

User 1 PI P2 P3
I

User n PI P2 P3

V
The authorized attributes

for user-1

I
Attr-1

I

+ +

I Attr-2
I

I

Attr-n

V

NULL

Figure 5.2 The Secondary-Memory-Based Implementation

of New Descriptor Authorization Table (NDAT)

85

D. NEW DESCRIPTOR CREATION TIME

We know that the request authorization for the insert

requests with the new descriptor depends on either the new

descriptor-creation authorization or the access

authorization for the old descriptors. The new descriptor-

creation authorization can be performed before the creation.

If we create a new descriptor and the request is denied

because of the old descriptors' security specifications,

then we will have an unused, unnecessary descriptor.

Let us consider the following insert request for user 1

:

INSERT {<Salary,2000>,<Job,SALESMAN>,<Dept,T0Y>}

where both attribute Department and attribute Job are Type C

attributes and the predicate values, TOY and SALESMAN, do

not exist as descriptors. Thus, new Type C descriptors

should be created, TOY for the attribute Department, and

SALESMAN for the attribute Job, respectively.

Assume there are three or more backends and descriptor

search for predicate 1,2 and 3 will be performed by backend

1,2 and 3, respectively. Thus, backend 1 performs

descriptor search on the attribute Salary and finds the

corresponding descriptor. On the other hand, backend 2 can

not find descriptors for attribute Job with the value

SALESMAN. Backend 2 looks at the type of the attribute Job

and finds out that it is a Type C attribute. Consequently,

backend 2 wants to create a ne i Job as SALESMAN. Now,

86

backend 2 has to check whether or not user 1 is authorized

to create a new job. Backend 2 performs the new

descriptor-creation-authorization checks for user 1 on

attribute Job. This operation is performed as follows. The

NDAT block for user 1 is fetched from the secondary memory

via the pointer provided in the user-index for user 1. We

search the block to find the attribute Job. Since Job is in

the block, we conclude that user 1 is authorized to create a

new job. Thus, backend 2 requests a new descriptor, namely

SALESMAN, from the controller. The controller creates a new

descriptor and broadcasts it to all backends.

Similarly, backend 3 performs descriptor search on the

attribute Department and finds out that no descriptor exists

for TOY. It performs the new descriptor-creation-

authorization check on attribute Department for user 1.

Since attribute Department is not indicated in the NDAT

block for user 1 , user 1 is not authorized to create a new

department. The request must be totaly rejected. Now, we

have created a descriptor, namely SALESMAN, but we could not

insert the record. Thus, we have a descriptor for a name not

in the database. In addition, we have wasted an effort for

the new descriptor creation which is costly. The same

problem would also arise with predicate 1. If the user does

not have an access right for insertion of the records which

have salary of $2000. Some possible strategies to avoid

this problem are described in following sections.

87

1

.

Method -1 for new Descriptor Creation

This method tries to create the new descriptor as

the last step. Each backend first tries to decide about the

creation authorization for the new descriptor and the access

authorization for the old descriptors. If everything is

authorized, then the backend sends a status message to the

other backends. After receiving the status messages from all

the backends, we can conclude that the request is authorized

and we can demand new descriptors. The controller creates

the new descriptors and broadcasts them to the backends.

2

.

Method -2 for new Descriptor Creation

The problem with method-1 is efficiency, since each

backend has to wait for all status messages before

requesting a new descriptor creation. Method-2 allows the

backends to create a new descriptor whenever it is needed,

and if the request is denied, then the new descriptors are

deleted

.

The new descriptor deletion operation is requested

by the creator backend from the controller. The controller

deletes the new descriptor and broadcasts a deletion message

to the backends.

This method is also inef

f

icienct . In the worst case,

if there are N backends in the system, then we need N

additional messages from the backends for deletion and one

broadcast message from the controller. In addition, we will

have some deletion overhead in the controller.

88

3 . Method -3 for new Descriptor Creation

Method-3 also allows the backends to create a new

descriptor whenever it is needed. The controller creates a

new descriptor by assigning a descriptor-id and it does not

keep track of the value of descriptors. Thus, if the

backends do not store the new descriptors into DDIT and into

other tables, then there is no way to reach them again. If

the backend needs the same descriptor for a later request,

then the controller will assign another descriptor-id for

this descriptor regardless of its prior existence. The only

problem for this method is an increase of the number of

descriptor-ids because of some nonexistent descriptors.

M . The Sequence of an Insert Request with the Superior

Method

Method-1 is superior to others in terms of the

uniform handling of the problem, the lack of side effects

(e.g., the artificial descriptor-id increase seen in

method-3) and relatively modest overhead. Let us elaborate

method-1 and see the complete sequence for an insert

request

.

Directory Management receives the request and

performs AT search for each predicate assigned to that

backend. If there are Type C attribute in the request, then

they are locked, and descriptor search is performed for each

predicate, as follows. For each predicate, the backend

reads the DDIT, finds the attribute and the proper

89

descriptors on this attribute. If the attribute type is Type

C and there is no descriptor for this attribute with this

particular predicate value, then we need to create a new

Type_C descriptor with this predicate value. The backend

looks at NDAT in order to check "creation authorization" for

the user on this predicate attribute. If the user is

authorized to create a new descriptor on this attribute,

then the backend continues descriptor search for the next

predicate. If the user is not authorized to create a new

descriptor on this attribute, then we deny the whole

request

.

After descriptor search is done for all predicates,

the backend broadcasts them and waits to get descriptor-ids

from the other backends. With this broadcast message, the

backend sends a flag indicating that a new descriptor is to

be created.

The processing for any type of insert request is the

same until this point. There may be two cases at this

point. The first case is that no backend needs to create a

new descriptor, i.e., this is an insert request with an

existing or empty cluster. The second case is that one or

more backends need to create a new descriptor. We have

elaborated the first case in the chapter 3. Let us consider

the sequence of processing for the insert request with a new

descriptor after this point.

90

The backends start "descriptor-level access control

process" on the descriptors that they have broadcasted.

There is no cluster for this request available to be

inserted into and to be checked for cluster-level access

control information. We have not yet created the new

descriptor. We delay the creation until after the descriptor

level access control process.

Let us look at the descriptor-level access control

process, which is the same as for an insert request with the

empty cluster. There is only one descriptor-id group for

the request since insert requests have only one cluster. If

we check user authorization for each descriptor and each of

the descriptors contains positive insert authorizations,

then we can deduce that the request is authorized. This

process is performed by all of the backends. After positive

authorization decision is completed, the backends which need

new descriptors request new descriptors from the controller.

When the controller sends a new descriptor creation message,

the backends start to store this new desriptor in the proper

tables, and they create a new cluster and the cluster-level

access control information.

91

E. THE ACCESS CONTROL INFORMATION SPECIFICATION FOR THE NEW

DESCRIPTORS

We still have to find an answer for the question "Who

can access to a cluster which is defined by this new

descriptor"? For example, if the new descriptor is a new

department, namely, TOY, then the question will be 'who can

read the salaries of the employees in this department and

who can not?'. Can we decide about this specification in

advance? Let us elaborate some choices for answers to this

question .

1 . Method _1_ for the Access Control- Specification for a

new Descriptor

This method requires the database creator to specify

all security specifications at the database creation time.

We have already decided that the new Type C-descriptor-

creation authorizations for each user would be specified at

the database creation time. Now, we have to ask 'can we

also specify the user access authorizations on this new

descriptor at the database creation time?'. In some cases

it may be possible. For example, the director of a

department will have right to read 'new employee's salary'.

This is very appropriate in terms of a static security

policy. However, we may not be able to predict all

necessary security specifications for new descriptors in

advance. For example, suppose we want to create a new

92

department which is a totally new managerial decision. It is

possible that it does not fit into the regular policies

specified in advance. Thus, we will need some additional

security specifications. Thus, the solution for this

problem may be to specify clear and available security

specifications at the database creation time and to use the

database administrator/creator's security specification

facilities to change or add new security specifications

later

.

2 . Method 2 for the Access Control Specification for _a

new Descriptor

It is clear that we may not be able to specify all

security specifications for some specific descriptors at the

database creation time. If we have the flexibility to

specify some security specifications after descriptor

creation time, then we will have an additional problem of

dealing with an insecure gap between the descriptor creation

time and new access control information specification time.

We may not want to specify the new security specifications

at the new descriptor creation time in the same insert

request, since such a specification will be too slow for the

insert requests. This gap must be covered by an additional

security mechanism to prevent unauthorized accesses. One

alternative is to 'assume full restriction for all users' at

the beginning and than to insert some security

93

specifications to authorize some users to access if such

access is needed. In this way, the system will have no

insecure gap and the system will be easy to handle in terms

of the overhead.

3 . _A Comparison of the methods

Method 1 provides a more secure and practical

security mechanism. With method 1 , the overhead will appear

at the time of insertion the new security specifications.

Initially, we will isolate all users from the newly created

descriptor and therefore from the new cluster. Thus, all of

the cluster-based security specifications will be "all

accesses are disallowed" for all of t-he users. We do not

care about each descriptor's security specifications in the

new cluster in order to derive the cluster-based security

specification from the descriptor-level access control

information

.

If we want to authorize a user with an access right

on the new descriptor, then we have to go back and check the

security specifications for the other descriptors in the

defining cluster. That is, we must determine if there are

any descriptors with more strict security specifications.

If one of the old security specifications is more strict

than the new security specification, then we accept the old

one and we warn the user. Let us consider the following

example

:

94

INSERT KSalary, 10000>

,

<Job ,SALESMAN> ,<Dept ,TOY>}

Let us assume that the security specifications in the

augmented_DSST for user_i on the descriptors in the

satisfying cluster are as in Figure 5.3. Let the new

cluster be defined by three descriptors where descriptor Dc

is the new descriptor for SALESMAN. The default security

specification for the new descriptor is 'all accesses are

disallowed for user_i . The cluster-based security

specification will be the union of the descriptor-based

security specifications of the corresponding descriptors.

Here, the security specification of descriptor Dc owerhelms

the others and the cluster-based security specification for.

the new cluster for user_i will be 'all accesses are

disallowed '

.

If we want to authorize user_i to read those

emloyees' salary who are SALESMAN, then we change descriptor

Dc's security specification. The new security specification

will have all possible accesses are disallowed except

retrieval of the Salary attribute. After this descriptor-

based security specification has been changed, we have to

rederive the cluster-based security specification. For this

process, we have to look at the DSST, the security

specifications for descriptors Da and Db, in order to make

sure that other descriptors in the cluster do not have any

conflicting security specifications which would not

95

Descr! Descriptor
I

Descriptor-based Security
id ! I

Specifications for user-1

Da |0<Salary<10K !<Name,No_Update> ,<Salary,NO_Retrieve>

Db 1 DeptrTOY ! <Dept , NO_Update>

Dc 1 Name=JOE I ALL

Figure 5.3 An Augmented DSST for User i

96

authorize user i to read SALESMEN'S salary. In this example

descriptor Da has the restriction for user_i, such that,

user_i can not retrieve the SALESMAN'S salary if the salary

of the salesman is between and 10000. Since the salary is

in this range, the modified descriptor-level security

specification will have no effect on the cluster-based

security specification. i.e., descriptor Da's security

specification (salary , No_Retrieve) is the most strict

restriction. Thus, the cluster-based security specification

will be unchanged as 'ALL'.

If descriptor Da did not have a restriction on the

retrieval of salaries, then security specification

derivation would be different. We would have specified a

field-level access control as <salary , No_Update> , since we

want user i to be able to retrieve the salaries of the

employees but not to change them.

We have elaborated the directory management

information based postprocessing in chapter 3 ,
'^ and 5. In

the next chapter, we will elaborate postprocessing phase of

the access control system.

97

VI . THE POSTPROCESSING

In chapter III, we described how access control was

divided into preprocessing postprocessing, and we developed

the database-creator-specified access control information

for preprocessing access control. In chapter 4 and 5, we

have elaborated the preprocessing access control. In this

chapter, we will develope the access control tools of

postprocessing. In the rest of the chapter, we will use the

term 'postprocessing' for the postprocessing step of the

access control whenever there is no confusing with the

postprocessing function of the controller.

A. ACCESS CONTROLS IN POSTPROCESSING

We described the MDBS access control system mostly as

preprocessing. Recall that preprocessing is restricted to

the directory attributes. Now, we also want to establish a

protection mechanism on the non-directory attributes. In

preprocessing, we have been able to restrict some operations

on the non-directory attributes. For example, the descriptor

containing the attribute value TOY has been specified on the

directory attribute Department. In addition, the attribute

Salary is a non-directory attribute. Assuming that the

descriptor-based security specification for TOY is: <--

, Salary, No Retrieve>. The meaning of the descriptor-based

98

security specification above is: the user can not retrieve

the salaries of those employees who are in the department

TOY. Thus, we protect a non-directory attribute (Salary)

from an operation (retrieve) with regard to the value of a

directory attribute (department=TOY) . The purpose of

postprocessing is to establish protection on the directory

or non-directory attribute with regard to the value of a

non-directory attribute. If the attribute department in the

previous example were a non-directory attribute, then the

access control would require postprocessing instead of

preprocessing .

B. THE POSTPROCESSING PHASE

We know that each backend in MDBS has three major

functions: directory management, concurrency control and

record processing. We also know that access control

preprocessing is performed in directory management utilizing

the directory management related information.

Postprocessing deals with the values of the non-

directory attributes. There is no way to determine the

physical location of the records with regard to their non-

directory attribute values. Thus, we can perform the

postprocessing only after record retrievals by the record

processing function of the backends.

Record processing has two major functions: the physical

data operations and the aggregate operations. A physical

99

data operation depends on the type of the request. For

insert requests, the physical data operation stores the

records into the secondary storage. For non-insert requests,

the physical data operation first fetches the records from

the secondary storage and filters the records which do not

satisfy the query in the user request. It then performs the

intended non-insert operation such as the deletion of

record, update of an attribute value of the record or

extraction of some attribute values of the record for a

retrieve request. An aggregate operation performs the

partial aggregate operation for the backend.

In the physical data operation, access control entails

the follwing: First, it will check that the user has any

security specifications specified on the non-directory

attributes. If the user does not have any security

specifications on the non-directory attributes, then the

access control will have no affect in record processing. Let

us assume that the user has some security specifications on

the non-directory attributes. During the physical data

operation, the backend fetches the records one track at a

time. Each record is checked to see whether it satisfies the

query in the request or not. If the record does not satisfy

the query, then it is ignored. After this step,

postprocessing checks will be performed for each satisfying

record. After postprocessing, the satisfying and authorized

records are sent to the aggregate function of record

100

processing. In the following sections, we will describe the

access control information and the steps in postprocessing.

C. THE POSTPROCESSING ACCESS CONTROL INFORMATION AS

SPECIFIED BY THE DATABASE CREATOR

In this section, we will describe the database-creator-

specified access control information for postprocessing. We

will also describe how to store this information. The main

idea of the access control information for postprocessing is

the same as the access control information described in

Chapter III for preprocessing. We, again, want to answer the

following question: who can perform what operations on which

part of the database. Specifying the first two items in the

question will be the same as for preprocessing. This

information is obtained from the user-ids and the access

operations, respectively. Specifying 'which' portion of the

database depends on the security specifications on the non-

directory attribute values given by the database creator.

The database creator specifies attribute-level access

controls on the non-directory attributes. An attribute -

level access control specified on a non-directory attribute

is of the form:

<Lower , Upper , Aggregate op

,

attribute
,
disallowed access op>

where lower and upper are the domain limits on the

attribute, the aggregate operator is one of the aggregate

101

operators, the attribute is a directory or non-directory

attribute and the dissallowed access operation is one of the

set {No_Retrieve , No_Update, No_Delete, No_Insert}. The

aggregate operator may be used only for the attribute-level

access controls with disallowed access operation as

No_Retrieve. The attribute entry is only included when the

dissallowed access operation is No_Retrieve or No_Update. If

the non-directory attribute which will be protected has

single value instead of value range, then the upper value

will not be specified.

The difference between the field-level access controls

for preprocessing and the attribute-level access controls

for postprocessing are as follows. The field-level access

controls are built on the descriptors while the attribute-

level access controls are built on the non-directory

attributes. In addition, for the attribute-level access

controls, the value boundary to be protected is specified

with the upper and the lower bounds which indicate the value

range on the non-directory attribute. The rest of the

access controls are the same.

An attribute security specification may be 'all' or a

collection of attribute-level access controls. An attribute

security specification of 'all' indicates that all accesses

are disallowed for the respective user. The attribute

security specification on an attribute is the collection of

attribute-level access controls for the attribute. It can be

102

represented as follows:

(Attribute) { <lower , upper , Agg_op

,

Attr .disallowed access op>

,

For example, we might have the attribute security

specification on the non-directory attribute Salary for the

various ranges of the Salary as

(Salary) { < 1 000 , 2000 ,— , Job , No_Update>

,

<1000,5000,— ,— ,No_Delete>, .

<4000,5000,— ,— ,No_Insert>} •

'

The meaning of this attribute security specification is as

follows: the user can not update the Job attribute of a

record, if the record has a salary between $1000 and $2000.

Nor can the user delete a record if the record has a salary

between $1000 and $5000. In addition, the insertion of a

record with Salary between $4000 and $5000 is not

authorized .

We store the access control information for the

postprocessing phase into the two layers of tables, the

non - directory - attribute table (NAT) and the attribute -

security - specification table (ASST). These tables and their

implementations are discussed in the next two subsections.

103

1. The Non - Directory - Attribute Table (NAT)

There is one NAT (see Figure 6.1), if the user has

some restrictions on the non-directory attributes. In the

NAT, we store only those non-directory attributes which have

an attribute security specifications specified on them. The

user-index in the backends' main memory has a pointer for

the NAT for each user. If the user does not have any

restrictions with regard to the non-directory attribute

values, then this pointer will be null. The NAT corresponds

to the attribute table in directory management. The

secondary storage-based NAT implementation is also the same

as the attribute table [R'ef.6]. Thus it will not be

elaborated here. Each attribute in the NAT has a pointer to

the corresponding ASST for the attribute. The ASST is

described in the next subsection.

2. The Attribute -Security -Specification Table (ASST)

We store the attribute security specifications for a

particular non-directory attribute in an ASST (Figure 6.2).

Thus, each non-directory attribute in the NAT has an ASST.

The relationship between the NAT and the ASST is shown in

Figure 6.3. We store the ASST in the secondary storage.

D. THE POSTPROCESSING OPERATION

The output of directory management is the secondary

memory addresses of those records which are authorized by

preprocessing. Those records are fetched and field-level

104

. + + .

'Next ! Non-Directory [Pointer to
I

lAttr I
Attribute I

ASST I

+ + + +

I I Attribute A ! + •

Attribute B

I I I

I I I

+ + +

I Attribute N !
+

+ + +

Figure 6.1 A Non-Directory-Attribute Table (NAT)

+ + +

! Attribute-level 1 Pointer
i

! access controls for
I

to next '

I Attribute-A ! block
!

+ + +

l<10,20,-,Job,No_Update>! 1

+ + +

! <10,50,-,-,No_Delete>
I !

+ + +
I I I

I I

+ + +

I <40,50,-,-,No Delete> !
+ > NULL

• +

Figure 6.2 An Attribute-Security-Specification

Table (ASST) on Attribute-A for User i

105

NAT for User i

!Next !

lAttr !

Non-Directory
Attribute

I
Pointer I

Ito ASSTl

Attribute A

Attribute B

Attribute N I
+__>

ASST for lAttribute A

V

Attribute-level ! Pointer
access controls for

I to next
Attribute-A ! block

I
<10,20,-,Job,No_Update>!

+ +

! <10,50,-,-,No Delete> !

! <40,50,-,-,No Delete> I I

I I

I

V

NULL

Figure 6.3 NAT and Corresponding ASST for User i

inR

values are examined by the record processing function. In

the physical data operation part of record processing, the

records are fetched from the secondary storage a track at a

time. Each record in the track is examined to see that it

satisfies the query in the request. For satisfying records,

the operations necessary for the request type

(insert , delete , update , retrieve) are performed. Since the

postprocessing deals with the field-level values of the

records, we can perform postprocessing in the physical data

operation part of the record processing function.

Consequently, we will perform the postprocessing operation

for the records satisfying the query.

Before record processing is started, we will look at the

user-index. If the pointer to the NAT is null in the user-

index, then record processing will not have any

postprocessing checks. If the user does have a pointer to

the NAT, then we search the NAT. The NAT stores the non-

directory attributes which have security specifications on

them and a pointer to the ASST for the corresponding

attributes. We fetch all the ASSTs with the pointers

provided from NAT. All the attribute security specifications

in the ASSTs are brought into the backend's main memory,

since we will use all this access control information for

each record. Now, we are ready to perform the record

processing with postprocessing capability. For each record,

if it satisfies the query in the request, then we will

107

perform the postprocessing checks on it. This operation will

be described in the following section.

E. THE POSTPROCESSING AUTHORIZATION PROCESS

The authorization process in postprocessing is the same

as the authorization process in preprocessing (Chapter IV).

The only difference is: we deal with records in

postprocesing whereas we deal with clusters in

preprocessing. This process is done as follows. For each

attribute security specification obtained from ASSTs, the

record's corresponding non-directory attribute-value is

fetched. If the attribute value is not between the upper

and the lower values of the attribute security

specification, then we conclude that the record can be

authorized for this attribute security specification. The

same operation is performed for the next attribute security

specification. If the attribute-value j^ between the upper

and the lower values of the attribute security

specification, then we perform exactly the same

authorization process of preprocessing for each request type

(see Section IV-A-2) .

108

VII. CONCLUSION

In this thesis, we have described the design and

analysis of an access control mechanism for the multi-

backend database system (MDBS). The design of this access

control mechanism is based on two major objectives. The

first objective is to introduce an access control capability

to MDBS without changing the existing parts of the system.

The second objective is to have an access control mechanism

without adding excessive overhead to the system. To

accomplish these objectives, the access control mechanism is

incorparated into the directory management. Thus, access

control is performed before any record is retrieved.

In addition, the capability to protect information which

does not have directory has been provided. This capabilities

can be exercised by the database creator. The user is

allowed to create a new Type C descriptor with an insert

request, if the user is authorized to create a new

descriptor on the corresponding attribute. The access

control information for the new descriptor is specified by

the database creator. Furthermore, the database creator is

provided with the capability to modify the access control

information .

As an access control principle, if the request is

partially authorized, then the partial result is given to

109

the user with a warning. For example, let us assume that the

user wants to retrieve the names of those employees whose

salaries are higher than $2000. However, the user is only

authorized to learn the names of those whose salaries are up

to $5000. In this case, MDBS will give the user the names of

those whose salaries are between $2000 and $5000 and will

warn the user that there are other names which are not

authorized for the user.

The access control information for each user is stored

in the descr iptor-to-descriptor-based-secur ity-specif ication

table (DSST), the cluster-to-cluster-based-security-

specification table (CSST) and the -non-directory-attr ibute

table (NAT). Entries in these tables are reached by

following pointers in the user-index. For simplicity, we

stored the user-index in the backends' main memory. For a

database with a large number of users, it might not be

feasable to store the user-index in the backends' main

memories. The user-index can then be stored in the backends*

secondary storages and the user's portion can be brought

into the main memories at the log-on time.

Finally, the access control mechanism of MDBS has been

designed to handle the value-dependent and pattern sensitive

information (see Chapter I). It also provides protection

for statistical data. Furthermore, it overcomes the pass-

through problem, since records in a cluster are protected in

the same way (i.e., only the authorized records are

1 10

accessed. The unauthorized records are never passed-through

the access control mechanism, nor are they accessed. See

Chapter III) .

1 1 1

LIST OF REFERENCES

1. Hsiao, D. K., Kerr, D. S., Madnick, S. E., Computer
Security

, ACM Monograph Series, 1979.

2. Menon, M. J., Hsiao, D. K., "Design and Analysis of a

Multi-Backend Database System for Performance
Improvement, Functionality Expansion and Capacity
Growth (Part I)", Technical Report OSU-CISRC-TR-8 1 -7 1

,

The Ohio State University, 1981

3. Menon, M. J., Hsiao, D. K., "Design and Analysis of a

Multi-Backend Database System for Performance Improve-
ment, Functionality Expansion and Capacity Growth (Part
ID", Technical Report OSU-CISRC-TR-8 1 -8 , Naval
Postgraduate School, 1983.

4. Kerr, D. S. , Orooji, A., Zong-Zhi, S., "The
implementation of a Multi-Backend Database System
(MDBS): Part II - Software Engineering strategies and
efforts towards a prototype MDBS.", Technical Report
OSU-CISRC-TR-82-1 , Naval Postgraduate School, 1983.

5. He, X., and others, "The Implementation of a Multi-
Backend Database System (MDBS): Part II - The Design of
a Prototype MDBS", Advanced Database Machine
Archtectures

,
Prentice-Hall, 1983, pp. 327-385

6. Boyne, R. D., and others, "The Implementation of a

Multi-Backend Database System (MDBS): Part III - The
Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management", Technical
Report N000m-75-C-0573, Chief of Naval Research , 1 983 .

112

INITIAL DISTRIBUTION LIST

1. Defence Technical Information Center
Cameron Station
Alexandria, Virginia 2231^

2. Library, Code 0142
Naval Postgraduate School
Monterey, California 939^3

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 939^3

4. Curricula Officier, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943

No. Copies

2

5. Professor David K. Hsiao, Code
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

6. Dr. Douglas Kerr, Code 52
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

7. Turk Deniz Kuvvetleri
Egitim Daire Baskanligi
Bakanliklar Ankara TURKEY

8. Ltjg. Ali EKICI
Dolapdere
Kinalikeklik Sok No=31
Kurtulus- Istanbul
TURKEY

9. Bogazici Universitesi
Bilgisayar Muhendisligi
Bebek- Istanbul
TURKEY

52

113

s «- <^y

Ekici
Detail design and

analysis of an access
control system for a

multi-backend database
system.

NOV 29 35 33133

Thesis
E2T83
c.l

2U83ii5

Ekici
Detail design and

analysis of an access

control system for a

multi-backend database

system.

